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Energy correction for isolated impurities under periodic boundary conditions

Hanae Nozaki* and Satoshi Itoh
Advanced Materials and Devices Laboratory, Corporate Research and Development Center, Toshiba Corporation,

1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan
~Received 27 October 1999!

The Coulomb energy of aperiodic systems was investigated. To treat completely isolated disorder in infinite
systems, energy correction for a supercell method is presented. We discuss a definition of the correction term,
and then consider a direct approach taking into account interactions between charge distribution and an indirect
approach based on a multipole expansion. In test calculations for isotropic-charged, anisotropic-charged, and
neutral impurities, impurity energies independent of supercell sizes were obtained. The present energy correc-
tion can be applied to arbitrary systems and is expected to realize more practical simulations for aperiodic
systems.

PACS number~s!: 02.70.2c, 61.72.2y
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I. INTRODUCTION

Computer simulations for complicated and large-siz
systems, e.g., amorphous structures, liquid crystals,
polymers, are now increasingly sought for materials des
and molecular mechanics~MM ! and molecular dynamics
~MD! simulations are being applied as useful tools@1,2#. In
many simulations for aperiodic systems, periodic bound
conditions are imposed to remove surface effects and c
struct infinite systems. This technique, a supercell method
known as an expedient approach and widely applied bot
ab initio and empirical calculations. For example, we c
directly use well-developed schemes for periodic syste
such as energy band calculation methods.

In order to simulate aperiodic systems containing lo
disorder, large supercells are required to diminish artific
interactions with impurities in the surrounding image ce
Unfortunately, it is quite difficult to treat sufficiently large
sized cells, because of the restrictions on computational t
and thus numerical inaccuracy depending on system siz
an unavoidable problem in the supercell method. This pr
lem becomes most serious in systems with long-range in
actions typified by a Coulomb potential.

One of the skillful approaches to aperiodic systems i
Green-function method to calculate the electronic states
deep levels in semiconductors@3,4#. For more efficient cal-
culations, an algorithm of empirical MM and MD simula
tions has been recently devised@5#. The aim of these
schemes is to simulate isolated disorder in infinite syste
directly.

When we focus our attention on the Coulomb ener
there is another approach in which we consider correc
terms for the supercell method. Actually, the importance
the correction has been already pointed out for ionic syst
@6,7#. In those studies, correction terms were given
monopole-monopole and monopole-quadrupole interactio
and impurity energies in some simple crystal lattices w
analytically investigated.
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In this paper, we discuss correction terms more precis
to deal with arbitrary systems where there is no constrain
crystal lattices and charge distribution. We consider two
proaches: one is a direct method treating charge distribut
and the other is an indirect method based on a multip
expansion. Impurity energies of ionic systems have been
vestigated to ascertain the validity of the present scheme,
the energies independent of cell sizes were obtained.

This paper is organized as follows. In the next section,
formulation of the energy correction is described. To und
stand the physical meaning of the correction terms, a mu
pole expansion is also discussed. In Sec. III, test calculat
for charged and neutral impurities are presented. We c
sider isotropic and anisotropic charge distribution for t
charged impurities, and show that the three cases have e
tial differences in cell-size dependence. We also compare
two methods, i.e., the direct and the indirect approaches
computational accuracy and efficiency. Finally, a short su
mary is given in Sec. IV.

II. FORMULATION

A. Definition

Our interest in this study is in the energy change due
local disorder which is introduced into an infinite host. He
we regard the host as a periodic system such as perfect
tals. The energy change for the Coulomb interaction is giv
by

Ei5
1

2E drE dr 8
ra~r !ra~r 8!

ur2r 8u
2

1

2E drE dr 8
rh~r !rh~r 8!

ur2r 8u
.

~1!

The symbolsra(r ) andrh(r ) are the charge distribution in
the aperiodic and the host systems, respectively. When
purity atoms are considered as the local disorder,ra(r ) is
defined by

ra~r !5r imp~r !1rh8~r !, ~2!

ry,
on,
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PRE 62 1391ENERGY CORRECTION FOR ISOLATED IMPURITIES . . .
wherer imp(r ) is the charge distribution of the impurity a

oms, andrh8(r ) represents the charge distribution modifi
by lattice relaxation around the introduced impurity. A
types of impurities, e.g., substitutional impurities, interstit
impurities, and defects, are described by Eq.~2!. The energy
changeEi is called the impurity energy, hereafter.

In the supercell method, the impurity energy is evalua
from

ESC5
1

2Ecell
drE

cell
dr 8(

l

rSC
a ~r !rSC

a ~r 8!

ur2r 82r l u

2
1

2Ecell
drE

cell
dr 8(

l

rSC
h ~r !rSC

h ~r 8!

ur2r 82r l u
, ~3!

whererSC
a (r ) means the charge distribution of an aperiod

system under the periodic boundary condition, and is gi
by

rSC
a ~r !5rSC

imp~r !1rSC
h8 ~r !1rBG. ~4!

The background chargerBG is required to keep the charg
neutrality per cell. The vectorr l is the equilibrium position
of the l th unit cell, and the summations in Eq.~3! are taken
for all cells.

Whereas the impurity energyEi is the energy change in
the whole system,ESC is the energy change per cell. Consi
ering the cell sizeL, we obtain

lim
L→`

ESC~L !5Ei . ~5!

Since the cell size is limited by computer capabilities, t
supercell method needs a correction term to evaluate the
purity energyEi . In fact, it has been shown that theESC of
ionic systems has very slow asymptotic behavior with
cell-size dependence@5#. In this study, we define the correc
tion energy as

DE~L !5ESC~L !2Ei . ~6!

Here, we note that the following condition is assumed
a prerequisite for the correction termDE : the size of super-
cells is taken to be large enough to describe lattice relaxa
caused by the impurity. Thus, the present correction aim
obtain the impurity energy of a system where the optimiz
relaxation structure has been embedded in the host sys
This prerequisite is supported from the fact that the Coulo
forces acting on constituent atoms have rapid converge
concerning the cell-size dependence@5#. SinceDE depends
primarily on the lattice constantL, the correction term for the
forces almost disappears in the differential. This fact brin
about reliable results for crystal structures obtained by M
and MD simulations based on finite-sized supercells. T
prerequisite is explicitly written by

ra~r !.@rSC
imp~r !1rSC

h8 ~r !#d~r2r cell!

1 (
l Þ0

rSC
h ~r !d~r2r cell2r l !, ~7!
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wherer cell is the relative position in the unit cell andr l 50
for l 50. We also accept

rh~r !5(
l

rSC
h ~r !d~r2r cell2r l ! ~8!

for the host system which contains no local disorder.
Standing on Eqs.~7! and~8! and substituting Eqs.~1! and

~3! into Eq. ~6!, the correction term is, finally, written as

DE5DE(1)1DE(2)1DE(3) . ~9!

The three terms are given by

DE(1)5
1

2Ecell
drE

cell
dr 8(

l

@r imp~r !1rBG#@r imp~r 8!1rBG#

ur2r 82r l u

2
1

2Ecell
drE

cell
dr 8

r imp~r !r imp~r 8!

ur2r 8u
, ~10!

DE(2)5E
cell

drE
cell

dr 8 (
l Þ0

r imp~r !r rlx~r 8!

ur2r 82r l u

1E
cell

drE
cell

dr 8(
l

rBGrh8~r 8!

ur2r 82r l u
, ~11!

DE(3)5
1

2Ecell
drE

cell
dr 8 (

l Þ0

r rlx~r !r rlx~r 8!

ur2r 82r l u
, ~12!

wherer rlx(r ), which is defined by

r rlx~r !5rh8~r !2rh~r !, ~13!

indicates the difference in charge distribution caused by
lattice relaxation. The subscript SC for the charge distrib
tion is omitted in Eqs.~10!–~13! and hereafter.

Equations~10!–~12! give the interactions between the di
ferent cells, andDE(1) , DE(2) , and DE(3) correspond to
r imp-r imp , r imp-r rlx , and r rlx-r rlx interactions, respectively

The termsr imp(r )rh(r 8) in DE(2) andrh8(r )rh(r 8) in DE(3)

originate from the impurity energyEi of the aperiodic sys-

tem, becauser imp(r )1rh8(r ) of the celll 50 interacts with
rh(r ) of the surrounding cells as shown in Eq.~7!.

B. Multipole expansion

In this subsection, we discuss the physical meaning of
correction terms. According to the electromagnetism, the
tential atr 8(ur 8u@ur u) given by the local charge distributio
r (r ) around the originO is generally described as the pote
tial due to multipoles$Ma[m]% (m50,1,2, . . . ) positioned at
O, whereMa[m] , the mth-order multipole momentMab••• ,
is defined by

Ma[m]5
~2m21!!!

m! E drr~r !ra[m] , ~14!

with (2m21)!! 5(2m21)(2m23)•••1 and ra[m]
[r ar b•••.
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When the charge distributionra(r ) in each supercell is
approximated by a set of$Ma[m]% (m50, . . . ,mmax) at rO ,
the correction termDE is given by interactions betwee
these multipoles located in different cells as follows:

DE5 (
m50

mmax

(
m850

mmax

fmm8 . ~15!

The multipole interactionfmm8 is written by @8,9#

fmm85
1

2

~21!m8

~2m21!!! ~2m821!!!
(
a[m]

(
a8[m8]

Ma[m]Ma8[m8]

3F¹a[m]¹a8[m8] (
l Þ0

1

ur l uG , ~16!

with ¹a[m][]m/]r a]r b•••.
The multipole momentMa[m] in Eq. ~16! is given as

Ma[m]5Ma[m]
imp 1Ma[m]

rlx , ~17!

whereMa[m]
X (X5 imp or rlx! is calculated from

Ma[m]
X 5

~2m21!!!

m! E
cell

drrX~r !~r2rO!a[m] . ~18!

The positionrO is usually chosen to be in the center of t
charge distributionr imp(r ). Generally, if r (r ) has the
mth-order multipole momentsMa[m] , Ma[m11] depends on
the choice ofrO which cannot be uniquely defined. We ha
checked that theDE obtained from Eq.~15! does not show
serious dependence onrO as long as it is centered aroun
r imp(r ), because of the prerequisiteur u!ur 8u for the multi-
pole expansion, whereur 8u has the order of the cell size.

In the present study, multipoles up to the second-order
taken into account (mmax52). We denote monopole~point
charge!, dipole, and quadrupole moments byZ, Pa , and
Qab , respectively. It has been numerically checked t
higher-order multipole moments than quadrupoles contrib
little to the correction energy, as discussed later. T
monopole-monopole interaction is exceptionally calcula
by

fZZ5
1

2Ecell
drE

cell
dr 8(

l

Z8~r !Z8~r 8!

ur2r 82r l u
~19!

instead of by Eq.~16!, andZ8(r ) is defined as

Z8~r !5Zd~r2rO!1rBG. ~20!

In the case of orthorhombic supercells, the multipole
teractionfmm8 with odd m1m8 becomes zero through th
symmetry constraint. On the other hand,fmm8 with evenm
1m8 has a nonzero value and, particularly for cubic ce
with the lattice constantL, they are analytically written as

fZZ52
l

2

Z2

L
, ~21!
re

t
te
e
d

-

s

fZQ5
4p

9

ZQ̂

L3
, ~22!

fPP52
2p

3

P̂2

L3
, ~23!

fQQ5
3.733104

18

1

L5 F(
a

2~Qaa!2

2 (
aÞb

$2~Qab!21QaaQbb%G , ~24!

where we defineP̂5uPu and Q̂5(aQaa . The correction
termfZZ is discussed in Ref.@6# and the factorl is given as
2.8373, 3.6392, and 4.5848 for sc, bcc, and fcc lattices,
spectively. The termfZQ has been suggested in Ref.@7#.

Here, let us make a comparison between Eqs.~9! and
~15!. As mentioned above, the three termsDE(1) , DE(2) ,
and DE(3) correspond to ther imp-r imp , r imp-r rlx , and
r rlx-r rlx interactions. Sincer rlx(r ) never has a monopole, th
leading terms ofDE(1) , DE(2) , andDE(3) are expected to
befZZ , fZQ , andfQQ for charged impurities@if r rlx(r ) has
dipole moments,fPP becomes the leading term ofDE(3)].
As for neutral impurities,fPP is expected to be the leadin
term of all three terms. The energy correction based on
~9! where the charge distribution is directly taken into a
count is regarded as the calculation for anN-particle system.
In contrast, the indirect approach given by Eq.~15! corre-
sponds to a one-particle calculation, since only a set of m
tipoles is considered per cell.

C. Classical approach

It is straightforward to extend the present energy corr
tion to classical calculations, considering the point cha
q( l

s ) which has the following relations with the charge di
tribution r (r ):

ra~r !5(
s

N

(
l

qa~ l
s !d@r2ra~ l

s !#, ~25!

rh~r !5(
s

N

(
l

qh~ l
s !d@r2rh~ l

s !#, ~26!

r imp~r !5(
s

Ns

(
l

qimp~ l
s!d@r2ra~ l

s!#. ~27!

The notation (l
s ) indicates thesth atom in thel th cell, and

N andNs are the numbers of total atoms and impurity ato
per supercell, respectively. The atomic positionsra( l

s ) and
rh( l

s ) are those in the aperiodic and the host systems.
In the classical approach, Eqs.~10!–~12! and Eq.~18! are

replaced by the following expressions:
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DE(1)5
1

2 (
s

N

(
s8

N

(
l 8

qBG
imp~0

s!qBG
imp~ l 8

s
!

ura~0
s!2ra~ l 8

s8 !u

2
1

2 (
s

Ns

(
s8

Ns qimp~0
s!qimp~0

s8!

ura~0
s!2ra~0

s8!u
, ~28!

DE(2)5(
s

Ns

(
s8

N

(
l 8Þ0

F qimp~0
s!qh~ l 8

s8 !

ura~0
s!2ra~ l 8

s8 !u
2

qimp~0
s!qh~ l 8

s8 !

ura~0
s!2rh~ l 8

s8 !u
G

1(
s

N

(
s8

N

(
l 8

qBGqh~ l 8
s8 !

ura~0
s!2ra~ l 8

s8 !u
, ~29!

DE(3)5
1

2 (
s

N

(
s8

N

(
l 8Þ0

F qh~0
s!qh~ l 8

s8 !

ura~0
s!2ra~ l 8

s8 !u
22

qh~0
s!qh~ l 8

s8 !

ura~0
s!2rh~ l 8

s8 !u

1
qh~0

s!qh~ l 8
s8 !

urh~0
s!2rh~ l 8

s8 !u
G , ~30!

with

qBG
imp~ l

s !

5H qimp~
l

ss!1qBG for impurity atoms ~s51, . . . ,Ns!

qBG otherwise,

~31!

and

Ma[m]
imp 5

~2m21!!!

m! (
s

Ns

qimp~0
s!@ra~0

s!2rO#a[m] , ~32!

Ma[m]
rlx 5

~2m21!!!

m! (
s

N

qh~0
s!$@ra~0

s!2rO#a[m]

2@rh~0
s!2rO#a[m]%. ~33!

In Eqs. ~28!–~30!, self-interactions are not included in th
summations the same as in the integrations forr (r ).

III. TEST CALCULATIONS

In order to check the validity of the present energy c
rection, we have calculated the impurity energies of so
ionic systems. As isolated impurity systems, NaCl alkali h
lides containing local defects are considered. The equ
rium structures have been determined by empirical M
simulations in which the interatomic potential of NaCl
given by the rigid-ion model

c~r i j !5
e2

4p«0

q~ i !q~ j !

r i j
1A expF2B

r i j

R~ i !1R~ j !G .
~34!

The constantsA andB in the Born-Mayer-type potential ar
fixed at 1822 eV and 12.364, respectively@10#. The potential
parameters,q( i )51 and R( i )51.85 Å for Na ions;q( i )
-
e
-
-

521 andR( i )51.85 Å for Cl ions, are determined so as
realize an fcc crystal structure with the experimental latt
constant of 5.63 Å. The convergence criteria of the M
calculations are set for when the maximum force becom
0.01 times that in the initial structure. We apply the Ewa
method to lattice sums both in the MM calculations and
the energy correction.

The numerical results for three typical cases, isotrop
charged impurity~point defect!, anisotropic-charged impu
rity, and neutral impurity, are presented in this section. B
cause of the long-range Coulomb interaction, t
electrostatic energy sensitively depends on the lattice re
ation, even if its deviation under different simulation cond
tions is less than 1% of the nearest-neighbor interatomic
tance. To check clearly the cell-size dependence, the s
relaxation structure is embedded in different sized superc
and their impurity energies are compared in this study. T
relaxation structure was optimized by using a small-siz
supercell in order to attain a comparison with larger-siz
supercells. We should note again that the purpose of
present correction is to obtain the impurity energy of a s
tem where all the surrounding image cells are replaced by
host system as shown in Eq.~7!, and that the energy sens
tively depends on the lattice relaxation. Therefore, we a
have to carefully choose the size of supercells to optim
relaxation structures before the energy correction.

In this section, the impurity energies of the three cases
discussed, and the correction terms given by Eqs.~9! and
~15! are compared to each other. For convenience, we
call the two approaches based on Eqs.~9! and~15!, methods
I and II, respectively.

A. Case I: Isotropic-charged impurity

As the simplest example, an NaCl system containing
point defect is discussed. First, the electrostatic impurity
ergy corrected by method I is shown as a function of the c
size in Fig. 1~a!. The direct results of the supercell metho
ESC ~crosses! shows very slow convergence with increase
the size of the supercells. In contrast toESC, the corrected
energies ~open diamonds! give the constant valueEi
55.32 eV, independent of cell sizes. The ratioDE /Ei is
about 15% for the supercell with 216 constituent ions. W
have ascertained that this impurity energy of 5.32 eV agr
with the result obtained by the algorithm for aperiodic sy
tems@5#, which means that method I gives the impurity e
ergy of a completely isolated state.

The contributions from each term of method I are a
shown in Fig. 1~a!. The impurity energies corrected only b
the first term are plotted as open circles, and those corre
up to the second term are open squares. The first termDE(1)
overcorrects the impurity energy and the second termDE(2)
compensates for it. The contributions from the three term
the total correction energy show the relationDE(1).DE(2)
.DE(3) . In this case I, the correction is done well by co
sidering onlyDE(1) andDE(2) for all cell sizes except for the
216-ion supercell. This result comes about since the th
term DE(3) , which is given as ther rlx-r rlx interaction, con-
tributes little to the total correction energy, because the po
defect does not strongly affect the lattice relaxation, andr rlx ,
the change in charge distribution caused by the relaxat
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consequently remains small. The 216-ion supercell, howe
has a non-negligible contribution fromDE(3) , which indi-
cates that the correction for the smaller-sized superc
needs consideration up to the higher-order terms.

Secondly, the impurity energy obtained by method II
shown in Fig. 1~b!. Satisfactory correction is achieved for a
the cell sizes by consideringfZZ andfZQ ~closed squares!.
The monopole-quadrupole interactionfZQ compensates fo
the energy which is overcorrected by the monopo
monopole interactionfZZ ~closed circles!. The multipole
moments calculated for case I are given in Table I. T
system has only a monopole forM imp. The obtained mo-

FIG. 1. Coulomb energies of the isotropic-charged impur
~case I! obtained by method I~a! and by method II~b!. Crosses are
the results of the supercell method. Open diamonds show the
purity energies corrected fully by method I, and open circles a
open squares show those corrected byDE(1) and DE(1)1DE(2) ,
respectively. Closed circles and closed squares for method II ar
impurity energies corrected by the multipole interactionsfZZ and
fZZ1fZQ .

TABLE I. Multipole moments calculated for the three cases

Case I Case II Case III
imp rlx imp rlx imp rlx

Z (e) 1.0 1.0 0.0

P̂ (e Å) 0.0 0.0 13.7 26.4 14.1 26.5

Q̂ (e Å2) 0.0 102.9 212.0 33.2 0.0 9.6
r,

lls

-

s

mentsM rlx correspond to the fact that the point defect in
host system with homogeneous charge distribution bri
isotropic lattice relaxation and, in particular, no dipole m
ments appear. Because of the quadrupole momentQrlx, the
quadrupole-quadrupole interactionfQQ also exists in this
system. We have checked thatfQQ is negligibly small com-
pared tofZZ and fZQ . The corrected energy in Fig. 1~b!
which is not inferior to that in Fig. 1~a! suggests that metho
II is effective for simple cases such as a point defect.

Finally, we compare the two methods. Figure 1 sho
that the three terms of method I,DE(1) , DE(2) , andDE(3) ,
are mainly derived from the multipole interactionsZimp-Zimp,
Zimp-Qrlx, and Qrlx-Qrlx, respectively. As mentioned above
the lower-order term in method I makes the larger contrib
tion to the total correction energy. This is explained from t
fact that the three terms have the cell-size dependenceL21,
L23, andL25.

B. Case II: Anisotropic-charged impurity

Anisotropic charge distribution is now considered as
second example. The equilibrium structure of an NaCl s
tem containing four defects is shown in Fig. 2. The multipo
moments of this system are given in Table I. Case II has
dipole momentsPimp and Prlx which do not exist in case I
To make an easy comparison with the other cases by sca
the monopole-monopole interaction, we have obtainedZimp

51 by substituting a divalent anion for the central Cl2 ion in
the cell.

The result of method I is given in Fig. 3~a!. Compared
with Fig. 1~a!, the contribution from the third termDE(3) to
the total correction energy increases remarkably. In case
where a large relaxation occurs as shown as the multip
momentsPrlx and Qrlx, it is consequently important to tak
account ofDE(3) which is given as ther rlx-r rlx interaction.

Figure 3~b! shows the impurity energy calculated b
method II. Since dipole and quadrupole moments exist

-
d

he

FIG. 2. Cross section of the equilibrium structure of case
Open and closed circles are Na and Cl ions. A line indicate
1000-ion supercell where four ions, one Na and three Cl ions,
missing.
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this case, the higher-order multipole interactions, particula
fZQ and fPP , play an important role. In contrast to them
the contribution fromfQQ is still small, as in case I. An
accurate impurity energy was not obtained for the 512-
supercell. This result means that higher-order multipo
than the quadrupole are required for a supercell of this s
where the cell size is relatively determined from a compa
son with the relaxation region. With respect to large-siz
supercells, method II gives a good correction whenL21 and
L23 multipole interactions are taken into account. Method
is expected to be combined with MM and MD simulatio
owing to its one-particle calculations, for example, it enab
us to perform the energy correction at each MM and M
simulation step. From the viewpoint of computational acc
racy, the energy correction byfZZ , fZQ , andfPP ~closed
diamonds! seems to be available for this purpose.

From Fig. 3, it can be seen thatDE(1) , DE(2) , andDE(3)
in method I are derived from the multipole interactio
Zimp-Zimp, Zimp-Qrlx, and Prlx-Prlx, respectively. The differ-
ence from case I is the third term. A large contribution fro
DE(3) in Fig. 3~a! is attributed to the dipole-dipole interac
tion with the L23 cell-size dependence. Case II shows th
method I is required to consider up to the third term

FIG. 3. Coulomb energies of the anisotropic-charged impu
~case II! obtained by method I~a! and by method II~b!. Closed
diamonds and closed triangles for method II are the impurity en
gies corrected by the multipole interactionsfZZ1fZQ1fPP and
fZZ1fZQ1fPP1fQQ . The other symbols and the scale of th
vertical axis forE/Ei are the same as Fig. 1.
y

n
s
e,
i-
d

I

s

-

t
r

systems having dipole moments, even in the calculation
ing large-sized supercells.

C. Case III: Neutral impurity

In the last example, a Schottky defect shown in Fig. 4 w
considered as the neutral impurity. Although the net cha
per cell does not appear, this system has a dipole mome
M imp and dipole and quadrupole moments asM rlx. Their cal-
culated moments are listed in Table I.

Figure 5 shows the results obtained by methods I and
Whereas the ratioDE /Ei for the smallest-sized supercell
about 15% in case I and 13% in case II, it is only 2% in ca
III. This result is obvious because the monopole-monop
and the monopole-quadrupole interactions are unable to e
for the neutral impurity. However, if the impurity has th
dipole moment, the dipole-dipole interaction gives theL23

cell-size dependence to the correction energy. Figure
shows that the neutral impurity also needs the correc
term, although it is not as large as that of the charged im
rities.

From the comparison between methods I and II, the th
terms of method I are found to come from the multipo
interactionsPimp-Pimp, Pimp-Prlx, andPrlx-Prlx. The results of
cases II and III seem to suggest that the relationPrlx

'2 1
2 Pimp is satisfied in the present test calculations. T

relation leads toDE(2).2DE(1) , which is the reasonDE(1)
and DE(2) cancel each other~i.e. crosses and open squar
overlap! in Fig. 5~a!. Since the total correction energy
attributed only to the dipole-dipole interaction, the cancel
tion prevents the correction energy from having a large c
tribution, in spite of the long-rangeL23 interaction. In cases
where a host system has a heterogeneous charge distrib
such as a molecular crystal, and thus the lattice relaxa
enhancesPimp1Prlx, the correction energy could have a mo
important contribution even for the neutral impurity.

y

r-

FIG. 4. Cross section of the equilibrium structure of case
The line indicates a 1000-ion supercell where two ions are miss
as a Schottky defect.
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IV. CONCLUSIONS

In this paper, we investigated the Coulomb energy of i
lated impurities. Due to the periodic boundary condition,
supercell method contains interactions with impurities in

FIG. 5. Coulomb energies of the neutral impurity~case III! ob-
tained by method I~a! and by method II~b!. Closed diamonds for
method II are the impurity energies corrected by the dipole-dip
interactionfPP . The other symbols have the same meanings
Figs. 1 and 3. The vertical axis is enlarged three times the sca
Figs. 1 and 3 forE/Ei .
et
-
e
e

surrounding image cells. To exclude these artificial inter
tions and obtain the energy of a completely isolated state,
correction terms were presented. We discussed the two
proaches: one calculates directly interactions between
charge distribution as the three terms, and the other desc
the charge distribution based on a multipole expansi
where multipole moments up to second order are conside
in this study.

In the test calculations, we considered the three typ
cases: isotropic-charged, anisotropic-charged, and ne
impurities. From the results obtained, the following chara
teristics have been found for the two approaches. For
energy correction given in the definition~method I!, ~i! the
impurity energy can be evaluated for arbitrary sized cells
the supercells are large enough to describe the relaxa
region, ~ii ! the three terms contribute to the total correcti
energy asDE(1).DE(2).DE(3) , and ~iii ! consideration up
to the third term is required for systems having dipole m
ments and for small-sized supercells, where the cell siz
relatively determined from a comparison with the relaxati
region. As for the energy correction based on the multip
expansion~method II!, ~i! its one-particle calculation attain
a more efficient correction than method I, which is regard
as anN-particle calculation,~ii ! it is indispensable for com-
putational accuracy to consider up to theL23 interactions:
monopole-monopole, monopole-quadrupole, and dipo
dipole, and ~iii ! satisfactory correction is likely to be
achieved for isotropic-charged impurities and large-sized
percells. With respect to the cell-size dependence, cha
and neutral impurities have the leading terms ofL21 and
L23 interactions, respectively.

The present energy correction can be efficiently applied
arbitrary systems by considering the two approaches, an
expected to realize more practical computer simulations
aperiodic systems. Applications in which MM and MD ca
culations are combined with the energy correction are n
required for further important study.
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